资源类型

期刊论文 121

会议视频 6

年份

2023 19

2022 10

2021 10

2020 8

2019 4

2018 7

2017 5

2016 4

2015 11

2014 6

2013 5

2012 2

2011 3

2010 3

2009 4

2008 8

2007 9

2004 1

2002 1

2001 2

展开 ︾

关键词

能源 3

扫描格式转换 2

燃料电池 2

碳中和 2

PCI总线 1

中国和美国;洁净煤技术;现状;发展趋势;战略建议 1

二氧化碳利用 1

二氧化碳封存 1

二氧化碳捕集 1

二氧化碳捕集、利用与封存 1

二氧化碳还原 1

保持边缘的自适应滤波器 1

光加热 1

光热 1

光热纱线 1

分级转化;梯级利用;节能减排;煤炭 1

制氢 1

动态路由 1

化学吸收 1

展开 ︾

检索范围:

排序: 展示方式:

Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1028-1037 doi: 10.1007/s11705-022-2251-2

摘要: Electrodes that combine energy storage with mechanical and photothermal performance are necessary for efficient development and use of flexible energy storage and conversion devices. In this study, the flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films were fabricated via a one-step “soak and polymerization” method. The dense sandwich structure and strong interfacial interaction endowed polypyrrole/cellulose nanofiber composite films with excellent flexibility, outstanding mechanical strength, and desired toughness. Interestingly, the polypyrrole/cellulose nanofiber composite film electrodes with quaternary amine functionalized cellulose nanofiber had the highest specific mass capacitance (392.90 F∙g–1) and specific areal capacitance (3.32 F∙cm–2) than the electrodes with unmodified and carboxyl functionalized cellulose nanofibers. Further, the polypyrrole/cellulose nanofiber composite films with sandwich structure had excellent photothermal conversion properties. This study demonstrated a feasible and versatile method for preparing of multifunctional composite films, having promising applications in various energy storage fields.

关键词: cellulose nanofiber     electrochemical     photothermal conversion     polypyrrole    

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 636-653 doi: 10.1007/s11705-019-1824-1

摘要: Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.

关键词: solar stream generation     plasmonics     porous carbon     photothermal materials     solar energy conversion efficiency     water vapor generation rate    

Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2144-2155 doi: 10.1007/s11705-023-2362-4

摘要: This study introduces multifunctional silica nanoparticles that exhibit both high photothermal and chemodynamic therapeutic activities, in addition to luminescence. The activity of the silica nanoparticles is derived from their plasmonic properties, which are a result of infusing the silica nanoparticles with multiple Cu2–xS cores. This infusion process is facilitated by a recoating of the silica nanoparticles with a cationic surfactant. The key factors that enable the internal incorporation of the Cu2–xS cores and the external deposition of red-emitting carbon dots are identified. The Cu2–xS cores within the silica nanoparticles exhibit both self-boosting generation of reactive oxygen species and high photothermal conversion efficacy, which are essential for photothermal and chemodynamic activities. The silica nanoparticles’ small size (no more than 70 nm) and high colloidal stability are prerequisites for their cell internalization. The internalization of the red-emitting silica nanoparticles within cells is visualized using fluorescence microscopy techniques. The chemodynamic activity of the silica nanoparticles is associated with their dark cytotoxicity, and the mechanisms of cell death are evaluated using an apoptotic assay. The photothermal activity of the silica nanoparticles is demonstrated by significant cell death under near-infrared (1064 nm) irradiation.

关键词: copper sulfide nanoparticles     chemodynamic therapy     photothermal therapy     carbon dots     silica nanoparticles    

Bio-based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties

Jianzhong Ma,Li Ma,Lei Zhang,Wenbo Zhang,Qianqian Fan,Buxing Han,

《工程(英文)》 doi: 10.1016/j.eng.2023.06.005

摘要: This study presents a solvent-free, facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin (MV) using vanillin. The resulting MV not only imparted antibacterial properties to coatings layered on leather, but could also be employed as a green alternative to petroleum-based carcinogen styrene (St). Herein, MV was copolymerized with butyl acrylate (BA) to obtain waterborne bio-based P(MV–BA) miniemulsion via miniemulsion polymerization. Subsequently, MXene nanosheets with excellent photothermal conversion performance and antibacterial properties, were introduced into the P(MV–BA) miniemulsion by ultrasonic dispersion. During the gradual solidification of P(MV–BA)/MXene nanocomposite miniemulsion on the leather surface, MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene, which prompted its full exposure to light and bacteria, exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy. In particular, when the dosage of MXene nanosheets was 1.4 wt%, the surface temperature of P(MV–BA)/MXene nanocomposite miniemulsion-coated leather (PML) increased by about 15 °C in an outdoor environment during winter, and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100% under the simulated sunlight treatment for 30 min. Moreover, the introduction of MXene nanosheets increased the air permeability, water vapor permeability, and thermal stability of these coatings. This study provides a new insight into the preparation of novel, green, and waterborne bio-based nanocomposite coatings for leather, with desired warmth retention and antibacterial properties. It can not only realize zero-carbon heating based on sunlight in winter, reducing the use of fossil fuels and greenhouse gas emissions, but also improve ability to fight off invasion by harmful bacteria, viruses, and other microorganisms.

关键词: MXene nanosheets     Vanillin     Styrene substitute     Leather coating     Photothermal conversion     Warmth retention     Antibacterial properties    

Photothermal-Management Agricultural Films toward Industrial Planting: Opportunities and Challenges

Song Zhang,Zhang Chen,Chuanxiang Cao,Yuanyuan Cui,Yanfeng Gao,

《工程(英文)》 doi: 10.1016/j.eng.2023.06.016

摘要: As indispensable parts of greenhouses and plant factories, agricultural covering films play a prominent role in regulating microclimate environments. Polyethylene covering films directly transmit the full solar spectrum. However, this high level of sunlight transmission may be inappropriate or even harmful for crops with specific photothermal requirements. Modern greenhouses are integrated with agricultural covering materials, heating, ventilation, and air conditioning (HVAC) systems, and smart irrigation and communication technologies to maximize planting efficiency. This review provides insight into the photothermal requirements of crops and ways to meet these requirements, including new materials based on passive radiative cooling and light scattering, simulations to evaluate the energy consumption and environmental conditions in a greenhouse, and data mining to identify key biological growth factors and thereby improve new covering films. Finally, future challenges and directions for photothermal-management agricultural films are elaborated on to bridge the gap between lab-scale research and large-scale practical applications.

关键词: Greenhouse     Photothermal management     Passive radiative cooling     Light scattering    

Investigation of the roles of lignin in biomass-based hydrogel for efficient desalination

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 954-965 doi: 10.1007/s11705-023-2311-2

摘要: The shortage of freshwater has become a global challenge, and solar-driven interfacial evaporation for desalination is a promising way to alleviate the crisis. To develop highly efficient and environmentally friendly photothermal evaporator, the hydroxyethyl cellulose (HEC)/alkaline lignin (AL)/graphene oxide (GO) hydrogels (CLGs) with remarkable evaporative performance were successfully fabricated by a facile sol–gel method using biomass residues. The influence of AL content on the physicochemical properties of the evaporator was investigated. The increasing content of AL improves the mechanical properties, saturated water content and crosslink density of the hydrogels. The designed materials exhibit outstanding thermal insulation capacity (the thermal conductivity of less than 0.05 W·m–1·K–1) and high light absorption capacity of more than 97%. The solar evaporation efficiency and water evaporation rate of the HEC/64 wt % of AL/GO hydrogels (CLG4) achieve 92.1% and 2.55 kg·m–2·h–1 under 1 sun, respectively. The salt resistance test results reveal that the evaporation rate of the CLG4 can still reach 2.44 kg·m–2·h–1 in 3.5 wt % NaCl solution. The solar evaporation rate of the CLG4 can maintain in the range of 2.45–2.59 kg·m–2·h–1 in five cycles. This low-cost lignin-based photothermal evaporator offers a sustainable strategy for desalination.

关键词: lignin     photothermal     cellulose     desalination     hydrogel    

Hydrogel photocatalysts for efficient energy conversion and environmental treatment

《能源前沿(英文)》 2021年 第15卷 第3期   页码 577-595 doi: 10.1007/s11708-021-0756-x

摘要: Photocatalysts have attracted great research interest owing to their excellent properties and potential for simultaneously addressing challenges related to energy needs and environmental pollution. Photocatalytic particles need to be in contact with their respective media to exhibit efficient photocatalytic performances. However, it is difficult to separate nanometer-sized photocatalytic materials from reaction media later, which may lead to secondary pollution and a poor recycling performance. Hydrogel photocatalysts with a three-dimensional (3D) network structures are promising support materials for photocatalysts based on features such as high specific surface areas and adsorption capacities and good environmental compatibility. In this review, hydrogel photocatalysts are classified into two different categories depending on their elemental composition and recent progresses in the methods for preparing hydrogel photocatalysts are summarized. Moreover, current applications of hydrogel photocatalysts in energy conversion and environmental remediation are reviewed. Furthermore, a comprehensive outlook and highlight future challenges in the development of hydrogel photocatalysts are presented.

关键词: hydrogel     photocatalysts     energy conversion     environmental treatment    

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-019-1217-1

摘要: The SRAO phenomena tended to occur only under certain conditions. High amount of biomass and non-anaerobic condition is requirement for SRAO. Anammox bacteria cannot oxidize ammonium with sulfate as electron acceptor. AOB and AnAOB are mainly responsible for ammonium conversion. Heterotrophic sulfate reduction mainly contributed to sulfate conversion. For over two decades, sulfate reduction with ammonium oxidation (SRAO) had been reported from laboratory experiments. SRAO was considered an autotrophic process mediated by anammox bacteria, in which ammonium as electron donor was oxidized by the electron acceptor sulfate. This process had been attributed to observed transformations of nitrogenous and sulfurous compounds in natural environments. Results obtained differed largely for the conversion mole ratios (ammonium/sulfate), and even the intermediate and final products of sulfate reduction. Thus, the hypothesis of biological conversion pathways of ammonium and sulfate in anammox consortia is implausible. In this study, continuous reactor experiments (with working volume of 3.8L) and batch tests were conducted under normal anaerobic (0.2≤DO<0.5 mg/L) / strict anaerobic (DO<0.2 mg/L) conditions with different biomass proportions to verify the SRAO phenomena and identify possible pathways behind substrate conversion. Key findings were that SRAO occurred only in cases of high amounts of inoculant biomass under normal anaerobic condition, while absent under strict anaerobic conditions for same anammox consortia. Mass balance and stoichiometry were checked based on experimental results and the thermodynamics proposed by previous studies were critically discussed. Thus anammox bacteria do not possess the ability to oxidize ammonium with sulfate as electron acceptor and the assumed SRAO could, in fact, be a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes.

关键词: Anammox bacteria     Autotrophic     Biological conversion     Sulfate reducing ammonium oxidation (SRAO)    

Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1096-1108 doi: 10.1007/s11705-023-2317-9

摘要: Derivatization has great potential for the high-value utilization of cellulose by enhancing its processability and functionality. However, due to the low reactivity of natural cellulose, it remains challenging to rapidly prepare cellulose derivatives with high degrees of substitution. The “cavitation effect” of ultrasound can reduce the particle size and crystalline index of cellulose, which provides a possible method for preparing cellulose derivatives. Herein, a feasible method was proposed for efficiently converting regenerated cellulose to cellulose oleate with the assistance of ultrasonic treatment. By adjusting the reaction conditions including ultrasonic intensity, feeding ratios of oleic acid, reaction time, and reaction solvent, a series of cellulose oleates with degrees of substitution ranging from 0.37 to 1.71 were synthesized. Additionally, the effects of different reaction conditions on the chemical structures, crystalline structures, and thermal behaviors were investigated thoroughly. Cellulose oleates with degrees of substitution exceeding 1.23 exhibited amorphous structures and thermoplasticity with glass transition temperatures at 159.8 to 172.6 °C. This study presented a sustainable and practicable method for effectively derivatizing cellulose.

关键词: regenerated cellulose     cellulose oleate     sonochemistry     degree of substitution     thermoplasticity    

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

《能源前沿(英文)》 2012年 第6卷 第2期   页码 184-192 doi: 10.1007/s11708-012-0185-y

摘要: Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.

关键词: doubly fed induction generator (DFIG)     load frequency control     inertial control     wind energy conversion system (WECS)    

Anticorrosive composite self-healing coating enabled by solar irradiation

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1355-1366 doi: 10.1007/s11705-022-2147-1

摘要: Self-healing coatings for long-term corrosion protection have received much interest in recent years. However, most self-healing coatings rely on healants released from microcapsules, dynamic bonds, shape memory, or thermoplastic materials, which generally suffer from limited healing times or harsh conditions for self-healing, such as high temperature and UV radiation. Herein, we present a composite coating with a self-healing function under easily accessible sunlight by adding Fe3O4 nanoparticles and tetradecanol into epoxy resin. Tetradecanol, with its moderate melting point, and Fe3O4 nanoparticles serve as a phase-change component and photothermal material in an epoxy coating system, respectively. Fe3O4 nanoparticles endow this composite self-healing coating with good photothermal properties and a rapid thermal response time under simulated solar irradiation as well as outdoor real sunlight. Tetradecanol can flow to and fill defects by phase transition at low temperatures. Therefore, artificial defects created in this type of self-healing coating can be healed by the liquified tetradecanol induced by the photothermal effect of Fe3O4 nanoparticles under simulated solar irradiation. The healed coating can still serve as a good barrier for the protection of the underlying carbon steel. These excellent properties make this self-healing coating an excellent candidate for various engineering applications.

关键词: self-healing coating     phase transition     photothermal effect     corrosion protection    

Micro/nanofluidics-enabled energy conversion and its implemented devices

Yang YANG, Jing LIU

《能源前沿(英文)》 2011年 第5卷 第3期   页码 270-287 doi: 10.1007/s11708-010-0126-6

摘要: Most people were not aware of the role of energy as a basic force that drives the development and economic growth of the world until the two great oil crises occurred. According to the conservation law, energy not only exists in various forms but is also capable of being converted from one form to another. The common forms of energy are mechanical energy, chemical energy, internal energy, electrical energy, atomic energy, and electromagnetic energy, among others. The fluids in nature serve as the most common carriers and media in the energy conversion process. Following the rapid development of microelectromechanical systems (MEMS) technology, the energy supply and conversion issue in micro/nano scale has also been introduced in research laboratories worldwide. With unremitting efforts, great quantities of micro/nano scale energy devices have been investigated. Micro/nanofluid shows distinct features in transporting and converting energy similar to their counterpart macroscale tasks. In this paper, a series of micro/nanofluid-enabled energy conversion devices is reviewed based on the transformation between different forms of energy. The evaluation and contradistinction of their performances are also examined. The role of micro/nanofluid as media in micro/nano energy devices is summarized. This contributes to the establishment of a comprehensive and systematic structure in the relationship between energy conversion and fluid in the micro/nano scale. Some fundamental and practical issues are outlined, and the prospects in this challenging area are explored.

关键词: micro/nanofluid     different energy forms     energy conversion     medium role    

Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites

《能源前沿(英文)》   页码 763-774 doi: 10.1007/s11708-023-0897-1

摘要: Plastic waste is causing serious environmental problems. Developing efficient, cheap and stable catalytic routes to convert plastic waste into valuable products is of great importance for sustainable development, but remains to be a challenging task. Zeolites are cheap and stable, but they are usually not efficient for plastic conversion at a low temperature. Herein a series of microporous and mesoporous zeolites were used to study the influence of porosity and acidity of zeolite on catalytic activity for plastics conversion. It was observed that H-Beta zeolite was an efficient catalyst for cracking high-density polyethylene to gasoline at 240 °C, and the products were almost C4–C12 alkanes. The effect of porosity and acidity on catalytic performance of zeolites was evaluated, which clearly visualized the good performance of H-Beta due to high surface area, large channel system, large amount accessible acidic sites. This study provides very useful information for designing zeolites for efficient conversion of plastics.

关键词: plastics conversion     polyethylene     zeolites     acidity     porosity    

Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels

Alan J. McCue, Jura Aponaviciute, Richard P.K. Wells, James A. Anderson

《化学科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 262-269 doi: 10.1007/s11705-013-1334-5

摘要: The addition of Au as a promoter/modifier for alumina supported Co catalyst has been studied by combined high temperature, high pressure Fourier transform infrared (FTIR) and on-line gas chromatography. The combination of these tools permitted the state of the active catalyst surface to be monitored while following the elution of reaction products during the first 5–7 h on stream of the catalyst. The catalysts under study were a 10%Co/Al O and a 2.5%Au/10%Co/Al O Samples were characterised before use using Raman and temperature programmed reduction (TPR). During the initial stages of reaction, hydrocarbons were built up on the surface of the catalyst as monitored by FTIR and the nature and amount of these species were assessed in terms of CH /CH ratio and the density of these alkyl fragments by employing absorption coefficients for the individual components. The nature and reducibility of the Co particles were modified by the presence of Au while the later also shifted the CO/H balance by acting as an effective water-gas shift catalyst during the early stages of reaction. This characteristic was lost during reaction as a consequence of redistribution of the two metallic phases.

关键词: gold modified catalyst     conversion of synthesis gas    

A review on front end conversion in ocean wave energy converters

Nagulan SANTHOSH,Venkatesan BASKARAN,Arunachalam AMARKARTHIK

《能源前沿(英文)》 2015年 第9卷 第3期   页码 297-310 doi: 10.1007/s11708-015-0370-x

摘要: Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to technological and economical complexity, it is intricate to involve the majority of these energy harvesters in the real ocean environment. Effective utilization and sustainability of any wave energy harvester depend upon its adaptability in the irregular seasonal waves, situation capability in maximum energy extraction and finally fulfilling the economic barriers. In this paper, the front end energy conversions are reviewed in detail which is positioned in the first stage of the wave energy converter among other stages such as power take off (PTO) and electrical energy conversion. If the recent development of these front end energy conversion is well known then developing wave energy converter with economic and commercial viability is possible. The aim of this review is to provide information on front end energy conversion of a point absorber and emphasize the strategies and calamity to be considered in designing such kinds of devices to improve the energy harvesting competence. This will be useful to the engineers for speeding up the development of a matured point absorbing type wave energy converter.

关键词: wave energy converter     point absorbers     power take off (PTO)     front end energy conversion    

标题 作者 时间 类型 操作

Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal

期刊论文

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

期刊论文

Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions

期刊论文

Bio-based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties

Jianzhong Ma,Li Ma,Lei Zhang,Wenbo Zhang,Qianqian Fan,Buxing Han,

期刊论文

Photothermal-Management Agricultural Films toward Industrial Planting: Opportunities and Challenges

Song Zhang,Zhang Chen,Chuanxiang Cao,Yuanyuan Cui,Yanfeng Gao,

期刊论文

Investigation of the roles of lignin in biomass-based hydrogel for efficient desalination

期刊论文

Hydrogel photocatalysts for efficient energy conversion and environmental treatment

期刊论文

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

期刊论文

Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry

期刊论文

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

期刊论文

Anticorrosive composite self-healing coating enabled by solar irradiation

期刊论文

Micro/nanofluidics-enabled energy conversion and its implemented devices

Yang YANG, Jing LIU

期刊论文

Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites

期刊论文

Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels

Alan J. McCue, Jura Aponaviciute, Richard P.K. Wells, James A. Anderson

期刊论文

A review on front end conversion in ocean wave energy converters

Nagulan SANTHOSH,Venkatesan BASKARAN,Arunachalam AMARKARTHIK

期刊论文